Tubular structures and pipelines are commonly fabricated by using one of several different arc welding processes. This type of work is routine, takes place everyday, and proceeds in a reliable and predictable manner. Yet once in a while, sufficient magnetism arises within the components being fabricated that welding becomes seriously disrupted, threatening to cause expensive delays in the programme of work.

This article examines the origins of magnetic arc blow and discusses practical remedies which allow fabricators to minimise any subsequent delays in the welding schedule. A practical example in solving problems associated with high levels of magnetism at a work site in Hungary is also described.

Introduction

Welding arcs consist of a stream of electrons travelling from the welding electrode to the workpiece which heat up the joint preparation and melt filler metal to form a molten weld pool which is directed along the joint to form a weld. If, however, significant levels of magnetism are present in the material being welded, then the interaction between the magnetic field and the welding arc causes the arc to be deflected sideways with subsequent disturbance of the weld pool, see figure 1. This deflection is called magnetic arc blow and can lead to the possible introduction of defects in the weld, an increase in the time required to complete the work, and a frustrated team of welders.

Often the interference with the welding arc is small and welders can make the necessary adjustments required to complete the job. Occasionally, however, the arc becomes unstable or is completely blown out causing defective welds and greatly increased welding times. The cost implications of increased welding times or late delivery can be significant.

The solution to the problem is to demagnetise the weld preparation to enable welding to proceed. To do this properly requires a means of measuring the magnetic field in order to assess the magnitude of the problem, and then to confirm that successful demagnetisation has taken place. Measurement of the residual magnetic field in the joint preparation is important to ensure that demagnetising procedures reduce rather than increase the value. Since the magnetism in the steel can arise, in part, from the welding current itself, demagnetisation has to take this into account and a suitable procedure is described below.

Some level of magnetism is normally present within steel (except stainless steel.) The key factor in determining whether or not this will cause problems is the strength of the magnetic field at the point of welding. This should be measured as shown in figure 2. In general, where the magnetism in a joint preparation is found to be above 20 gauss (2mT), then disruption of the welding arc can be expected. When the value is over 40 gauss (4mT) then arc blow will be a problem. Demagnetisation techniques should aim to reduce the magnetic field in the joint preparation to below 10 gauss (1mT). It is not unknown to find magnetic fields of several thousand gauss which completely prevent any welding from taking place.

Once magnetic arc blow has begun to disrupt the welding arc, it is important to deal correctly with the problem to avoid unnecessary delays in the fabrication programme; it is important not to waste time with attempted remedies which cannot remove the high levels of magnetisation. By applying the correct demagnetisation procedures, welding can usually proceed at the normal production rate.
Factors affecting arc blow

A range of factors are responsible for the presence and strength of magnetism within materials. The most significant are listed as follows.

1. **The Earth's Magnetic Field**
 This becomes particularly important when pipelines or structures are laid in a North/South direction rather than East/West. The effect can also be greater as the length of the pipeline increases. Although the Earth's magnetic field is less than 0.1mT, this can become concentrated to a much greater value by steel alloys.

2. **Material**
 Magnetism can become a problem in materials with a ferrite crystal structure. This microstructure produces ferromagnetism which is found mainly in alloys with iron, nickel, or cobalt including steels but excluding most stainless steels. Arc blow is frequently encountered when welding steels with a high nickel content.

3. **Weld preparation**
 The magnetic field in a weld preparation is higher where the two butting faces are close together. Therefore, magnetic arc blow tends to be worse at the root of a weld where the gap between the faces is at its smallest. It is also more of a problem in deeper, narrower V preps where the arc has to travel farther in the proximity of the faces of the preparation.

4. **Presence of longitudinal seams**
 Where tubes have been manufactured using longitudinal welds, there can be a high magnetic field associated with the seams. Often, magnetism which is directed North on one side of the seam becomes strongly South on the other side. The location of these seams therefore causes particular difficulties when circumferential butt welds are attempted, since the welding arc will be deflected in one direction as the welder approaches the seam and will be abruptly deflected in the opposite direction as soon as the seam is passed by.

5. **D.C. Welding current**
 D.C. welding current tends to cause or intensify magnetic fields within steel whereas A.C. welding currents are much less prone to this. Where the magnetism in steel is produced entirely by the effect of the welding current, then switching to A.C. should be considered if that is possible.

6. **Assembly of components**
 When the magnetic field is measured at the end of a stand-alone tube or other components, this will be much lower than when tube ends are butted together. The strength of the magnetism normally increases, often by a factor of 10, when the pipes are assembled for welding.

7. **Welding process.**
 Magnetic arc blow is more likely to occur with lower voltage arcs. Therefore TIG welding which uses a low voltage arc, and which is often used for the root pass of multi-pass welds, is particularly susceptible to arc blow. Manual metal arc welding using small diameter electrodes also calls for low currents and voltages resulting in a tendency to arc blow. Where possible, it is advisable to "stiffen" the welding arc by increasing the current and hence the welding voltage.

8. **Magnetic particle inspection**
 Tubes which have been subjected to magnetic particle inspection can retain magnetism which subsequently contributes to the problems of arc blow.

9. **Magnetic clamps**
 These can be used to lift steel components, or to attach items to a steel surface. They tend to leave magnetic patches in the steel which may contribute towards the residual magnetism in the joint region.

10. **Large structures**
 Large structures such as those where pipes are used to link large vessels as frequently found in a refinery or chemical reactor are prone to becoming magnetic, particularly where the pipes are linking structures on the north of a site to those on the south. This occurs because large steel structures pull in the Earth's magnetic field and this becomes concentrated in the pipes which link the main parts together. Magnetic fields of several thousand gauss have been measured in pipes in these locations. Pipework being assembled or repaired under these conditions is very susceptible to magnetic arc blow.

11. **Hyperbaric welding**
 Hyperbaric welding carried out with high ambient gas pressures is more prone to arc blow than welding at atmospheric pressure. This is because the electrons which make up the welding arc are slowed down by the high gas pressure allowing the arc more time to be deflected by any magnetic field which may be present.
Several techniques can be used to reduce or remove the problem of arc blow.

Consider the joint design
Make the weld preparation wider if possible. A J preparation is better than a V.

Check the assembly procedure
When making several circumferential welds to fabricate a tube assembly, it is better to carry out the central weld first, and work towards the ends. If welding proceeds by making the outer joints first, the final closing weld in the centre of the assembly involves welding two large structures together. A closing weld near the centre of a structure can result in arc blow problems.

Select the welding process
If possible, an A.C. welding process should be used. This avoids the welding current from significantly magnetising the steel. If a D.C. process has to be used, then the susceptibility to arc blow can be reduced by using the highest arc voltage possible.

Demagnetisation prior to welding
It is possible to reduce the magnetism within a steel tube by carrying out a demagnetisation procedure. This requires the tube to be passed through a coil which is carrying an alternating electric current. The coil length should be at least equal to the diameter of the pipe. The peak value of the current multiplied by the number of turns should be 10,000 ampere turns per metre length of coil. The frequency of the alternating current used depends on the wall thickness and material of the tubes. Typical values for the demagnetisation of steel pipes are 0.3 Hz for ½ inch wall thickness and 0.1 Hz for 1 inch. Although this demagnetisation procedure is sometimes carried out, it is time consuming and requires expensive hardware and power supplies. Moreover, demagnetising prior to welding may not solve the problem of arc blow. Firstly, this is because it may not be possible to demagnetise tubes with linear seams which possess residual magnetism with both north and south polarity. Secondly, individual tubes may be successfully demagnetised to an acceptable level but once ends are butted together to form a weld preparation, the magnetic field can increase by a factor of 10. Thirdly, the magnetism which causes arc blow, may be caused by the welding current, rendering any prior demagnetisation useless.

Demagnetising During Welding
The most reliable method of demagnetising is to carry this out whilst welding is taking place. This is the only way to take account of variations in the level and polarity of the magnetic field which occur during welding. The Zeromag system available from Diverse Technologies carries out this demagnetising process automatically. A sensor is positioned near the welding electrode and the Zeromag unit ensures that the magnetic field in the joint preparation remains below 1 mT enabling welding to proceed as normal. The Zeromag technique removes the magnetic field within seconds and maintains the field close to zero throughout the weld. Any changes in the polarity of the magnetic field which occur as the weld proceeds are detected by the Zeromag sensor which immediately makes the necessary adjustments to the demagnetising current. Diverse also operates an on-site demagnetisation service to enable fabricators to deal with occurrences of arc blow.

REMOVAL OF MAGNETISM IN NI STEEL TUBES

Manufacturing of welded tubular structure from Ni alloyed steel.
A de-ethaniser column was ordered from DKG-EAST RT (Hungarian pressure vessel manufacturer) in the second half of 1998. Due to the low working temperature (-110°C), 12Ni19 (Wnr. 1.5680, DIN 17280) material was chosen for the vessel base metal. The material belongs to the 5% Ni alloyed carbon steel category. It has been found in practice that the higher the carbon and/or the Ni content of the steel, the more it tends to retain magnetism. These types of steels are categorised as magnetically hard materials and it is suggested that any order placed on a plate manufacturer specifies the maximum permitted magnetic field strength.

Details of the pressure vessel
The vessel is a vertically installed pressure vessel supported by a conical skirt. Vessel ends are closed by elliptical heads. The shell diameter is ID 1500 mm and ID 2500 mm, while wall thickness varies from 16 to 20mm for the ID 1500 mm part and 25 mm for the ID 2500 mm part. The transition cone between the two parts also has 25 mm wall thickness. The column's overall height is 35.4 m (See figure 3 for column details).

Due to the column dimensions, the vessel body was manufactured from 16 shell sections. Shell sections were welded by longitudinal joints (having 1800 to 2200 mm length) and the entire shell is fabricated by assembling and welding the circumferential joints between the sections.
Welding technique and parameters

Almost all the joints of the vessel were welded in the flat position including the circumferential joints which were rotated during welding. The nozzle-shell welds were also made as horizontal joints.

The Longitudinal joints of the vessel were "V" beveled, back ground and rewelded from the other side. Two supporting layers were welded by GMAW process, all other layers by the SAW process.

The Circumferential joints had symmetrical "X" bevels with double side welding. As before two supporting layers were welded by GMAW process and all other layers by SAW.

For the nozzle-shell joints, the shell opening was "half V" bevelled, and the welding performed by back grinding and rewelding from the other side using the SMAW process. The nozzle circumferential welds were "V" beveled with welding taking place from one side. The GTAW process was used for the root pass welding, the filling and covering layers arc welded using the SMAW process.

The welding material used for all processes was the austenite-ferrite type high alloyed material ensuring compliance with the high impact test requirements.

Magnetic build up in weld prep

Manufacturing of pressure vessels started with cutting and bevelling of the steel plates and rolling the shell sections. It appeared that the above procedures resulted in an increase in the magnetic field found in the material. However, the magnetism was of a low level and did not interfere with the longitudinal welding.

It was only after the longitudinally welded sections were subsequently rolled and assembled in preparation for circumferential welding, that a serious increase in the magnetic field was detected. Measurements showed that the magnetic field strength was about 10 times greater in the weld preparation than at the components' bevelled edges. This caused arc blow which at some locations was sufficient to prevent arc striking.

Attempts were made to solve the problem, using AC welding processes or to demagnetise the material prior to welding, but did not prove successful. At some locations where the magnetism was lower, it was possible to weld successfully only by stiffening the arc through the use of larger diameter electrodes and higher arc voltages. With such high levels of magnetism in the joint, it was necessary to reduce the magnetic field strength to acceptable levels during the welding process.

Demagnetising procedure during welding

Smaller components can be demagnetised easily and routinely by passing them through a demagnetising coil powered from the mains. For bigger components such as the above vessel, the only way was to use a localised demagnetising technique during the welding process. To accurately monitor the magnetic flux, it was essential to use a magnetic field meter capable of measuring the magnetism in the root of the weld preparation. This enabled the magnetic field in the vicinity of the joint preparation to be cancelled out and the manufacturing of the column was completed.

The magnetic field around the circumferential butt joints was not constant and varied significantly, particularly near the longitudinal joints. This necessitated continual monitoring of the magnetic field strength and continual adjustment of the demagnetising current to cancel out the residual field. Of course, after finishing welding and switching off the demagnetising equipment, the magnetic field returned to the components but was of no further concern. Figure 4 shows a circumferential joint being welded whilst demagnetisation is taking place.

Conclusions

1. Low levels of magnetism caused by the Earth's field or the welding current can result in much higher magnetic fields when tubes are assembled for the welding of circumferential butt joints.
2. It is worthwhile being prepared for the possibility of magnetic arc blow since there are some simple changes to the welding process which can be made to relieve the problem.
3. Demagnetisation whilst welding is taking place is the most reliable method of ensuring that welding can proceed with the minimum time delay.
4. Propriety equipment is available which reduces magnetism in weld preparations to the low levels required by arc welding.

József Takács, EWE is a welding engineer with DKG-EAST Oil and Gas Equipment Manufacturing Company, at Nagykanizsa, Hungary.

Further information on Zeromag

Diverse Technologies Ltd., Cambridge, U.K.
Tel +44 (0) 1223 84 44 44
Email sales@diverse-technologies.net